On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods
نویسنده
چکیده
Differential equations of the form ẋ = X = A+B are considered, where the vector fields A and B can be integrated exactly, enabling numerical integration of X by composition of the flows of A and B. Various symmetric compositions are investigated for order, complexity, and reversibility. Free Lie algebra theory gives simple formulae for the number of determining equations for a method to have a particular order. A new, more accurate way of applying the methods thus obtained to compositions of an arbitrary first-order integrator is described and tested. The determining equations are explored, and new methods up to 100 times more accurate (at constant work) than those previously known are given. 1. Composition methods. Composition methods are particularly useful for numerically integrating differential equations when the equations have some special structure which it is advantageous to preserve. They tend to have larger local truncation errors than standard (Runge-Kutta, multistep) methods [4,5], but this defect can be more than compensated for by their superior conservation properties. Capital letters such as X will denote vector fields on some space with coordinates x, with flows exp(tX), i.e., ẋ = X(x) ⇒ x(t) = exp(tX)(x(0)). The vector field X is given and is to be integrated numerically with fixed time step t. Composition methods apply when one can write
منابع مشابه
Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملNumerical inversion of Laplace transform via wavelet in ordinary differential equations
This paper presents a rational Haar wavelet operational method for solving the inverse Laplace transform problem and improves inherent errors from irrational Haar wavelet. The approach is thus straightforward, rather simple and suitable for computer programming. We define that $P$ is the operational matrix for integration of the orthogonal Haar wavelet. Simultaneously, simplify the formulaes of...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملSplitting and composition methods in the numerical integration of differential equations
We provide a comprehensive survey of splitting and composition methods for the numerical integration of ordinary differential equations (ODEs). Splitting methods constitute an appropriate choice when the vector field associated with the ODE can be decomposed into several pieces and each of them is integrable. This class of integrators are explicit, simple to implement and preserve structural pr...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 16 شماره
صفحات -
تاریخ انتشار 1995